RESEARCH

- ANALYSIS
QORPORATION

Optimal Decision Rules for

the Triangular E Model

of Chance-Constrained Programming

DISTRIBUTION STATEMENT

This document has been opproved for public re-
leose ond sale: its distributisn is unlimited.




The contents of RAC publications, includingthe conclusions,
represent the views of RAC and should not be considered as
having official Department of the Army approval, erther ex-
pressed or implied, untilreviewed and evoluated by that agen-
cy and subsequently endorsed.




ADVANCED RESEARCH DEPARTMENT
TECHNICAL PAPER RAC-TP-226
Published September 1966

Optimal Decision Rules for

the Triangular E Model

of Chance-Constrained Programming

by

Abraham Charnes ! .
Northwestern University : X
Michael J. L.. Kirby ;

Rescarch Analysis Corporation

This document has been approved for public re-

DISTRIBUTION STATEMENT
lease and sole; its disteibution is unlimited. s

b

Tx?’
240 i
f RESEARCH ANALYSIS CORPORATION

MCLEAN, VIRGINIA




i e e

FOREWORD

This paper establishes properties of the optimal decision
rules for a particular class of chance-constrained programming
problems. The type of problem cnnsidered is an n-period model
in which each period generates exactly two constraints. One of
these constraints couples the decision rule of the jth periodtothe
decision rules of all succeeding periods, while theother is a con-
straint requiring the decision rule to be nonnegative with at least
a specified probability. Necessary and sufficient conditions for
optimality are derived and related to results in the calculus of
variations,

One application of the mathematical developments presented
in this paper is described in RAC-P-12, *Application of Chance-
Constrained Programming to Solution of the So-Called ‘Savings
and Loan Association’ Type of Problem.”

The work of Professor Charnes was partly supported by ONR
Contract Non R-1228(10), Project 047-021 and by Projects EF
00355-01 and WP 00019-04 with the National Institutes of Health
(NIH).

Nicholas M. Smith
Head, Advanced Research Department
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ABSTRACT

This paper deals with an n-period E model of chance-
constrained programming in which each period } =1, ...,n
generates exactly one new constraint, It is shown that there
are cases in which the problem canbe reduced to one of sol-
ving n rather simple one-variable nonlinear programming
problems,

The results of this paper are illustrated by means of
an example giving the solution of a two-period problem of
planning for liquidity in a savings and loan association,
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1. INTRODUCTION

In a previous paper' the authors established certain necessary conditions
for decision rules to be optimal for the block triangular n-period E model of
chance-constrained programming. This paper is concerned with a more re-
stricted problem than the one considered in RAC-TP-166.' In particular an
n-period E model is considered in which each periodj =1, ... ,n generates
exactly one new constraint rather than m; new constraints as inthe earlier paper.

This restriction leads to a problem that is easier to handle mathematically
than the more general case considered in RAC-TP-166, about which much more
can be said. In fact, in certain cases the problem can be reduced to one of solv-
ing n rather simple one-variable nonlinear programming problems. Moreover,
in the event that each of the random variables involved in the problem has the
same distribution, the complete n-stage problem can be reduced to solving one
of these simple nonlinear problems.

In addition, two generalizations of the problem in RAC-TP-166' are con-
sidered here. First, instead of having the i th constraint be of the ferm

POY g\ b)) 2

which would be the triangular version of the block triangular n-period problem,
the ith constraint is allowed to be of the form

t
l‘(’l.l d”\' + dlhl . lll")l ..... hl--l' B “) = “ o
where d, is a constant and w, (b,, ... ,b, ,;is an arbitrary piecewise continuous
function of the random variables b,, . . . ,b,_,. Second, the nonnegativity con-

straints X, ~ 0,;~=1,... ,n, used in RAC-TP-166' are replaced by the more
general constraints P(X, ~0) ~ 8, j=1,...,n, where g, is some preassigned
probability.

The effect of this second generalization is discussed at length. It is shown
that restricting \, to be nonnegative only 100 8, percent of the time, rather than
all the time as was done in RAC-TP-166', greatly increases the mathematical
complexity of the problem. In addition the interesting result is derived that
when such a constraint is tight, the optimal rule is often discontinuous where
it was previously continuous. From other points of view, this result is to be
anticipated. For example (Y,s) policies; when optimal, in inventory theory have
this property, as do many solutions of optimal control problems. '

The simplification that results when all the preassigned probabilities are
equal to 1 is also illustrated. In this case the optimal decision rule for period
is a piecewise linear function of the decision rules of periods 1, ... 1 1, and
the pieces can be easily found.
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An example of the application of the results of this paper to a problem in
financial planning is contained in Charnes and Kirby, which gave a solution of
a two-period problem of planning for liquidity in a savings and loan association.
In this model the fact that the optimal decision rule is in general discontinuous
is surprising, but it can be explained by economic arguments.

2, STATEMENT OF THE PROBLEM
The problem to be considered is:
maximize

n
= .
':l[(cl\,)

subject to
Plapy Ny v dyby v oo S0 2y,
l'(azl\l ¢+ don \.., + 42b2 + “‘2(')]) = 0) 2 %o,

PQag %y v oagaly ¢+ agaXy + dyby v wy(by,by) S 0) 2 &,

1
h('i a, X v db v ey b ) S o) B T
'! .
"(,.‘Zn"""\’ « by by A bey) < 0) 2 %,
PN, 200 2B 11,0, (1)

where P and E represent the probability and expectation operators, respectively.
The probability and expectation is computed by using the joint distribution of all
the random variables involved in the problem.

In Problem 1 the following assumptions are made:

(a) ay, ,i >j,i,j=1,...,n,dj,¢,,i=1,...,n and w, are given constants,
and a,, #0, d, # 0 for alli.

(b) o, B' yisi=1,...,n are known probabilities. Thus 0 < a,, B, < 1 for
alli andj.

(c) the b, ,i=1,...n are continuous random variables whose joint fre-
quency function f,(by, . . . ,b,) is known.

(d) X,,1=1,...,nis a function of the random variables b,, . . . ,b,_,
but it is not a function of b,. . .,b, . Thus we will solve Eq 1 for X; - X;
(by, ... ,bi_).

In Se’cls we will consider the more general problem that arises when
we allow ¢,, . . . ,¢, to be random variables rather than constants as they are
in assumption a. However, since some of the work in Sec 3 does not extend
to this case we will for the moment assume that ¢,,j=1, ... ,n are given
constants.




Assumption d is due to our interpretation of the problem. We are going
to treat Problem 1 as an n-period, or n-stage, problem in which X, the de-
cision rule for the jth period, is selected after all previous decisions X,,.. . X, _,
are known and after the values of the random variables of periods 1 toj ~ 1
have been observed but before b, and all random variables and decisions of
periods j+ 1 ton have been observed.

In other words, X,, the first-period decision rule, must be selected before
the value of the first-period random variable b, is observed. Then, when we have
selected X, and observed b,, the second-period decision rule X; must be chosen
before the value of b, is observed. This process continues with X, depending
explicitlyon X,, b;,i = 1,...,j—1and only implicitly (i.e., through the coupling
effect of the constraints) on bj and X,, b,,i =j+1,... ,n. It is this interpretation
that led us to make assumption d.

The set Q,,i=1,...,n in i-dimensional Euclidean space is defined as
the set of points (b,, ... ,b;) for whichf, (b, ... ,b) >0, wheref, (b, ... ,b)
is the joint frequency function of b,, . . . ,b,. Since we have, by definition of
fi(by, . . . ,b,), the identity

f,by, ...b) n db,

"‘=|¢| !

it may be seen by assumption c thatf,(b,, ... ,b) is a known function. It is
important to note that no restriction on Q, as a bounded set has been made.
Thus it may extend to + = in any, or all, of its i dimensicus.

F, (.) is used to represent the multivariate cumulative distribution function
of the random variables b,, .. . ,b,. We will write

FAG [ ff by, ., b)dby...db,,
G

where G is any subset of i -dimensional space.

One more restriction must be placed on our problem in order that the
differential equations method of the isoperimetric theory of the calculus of
variations may be used.

Assuine that for each s, s=2, .. . ,n, there exists a set of s - 1 dimen-
sional rectangles, say {A}-", te?s-'}, where L' is some indexing set, such that

() Q_, ¢ ?A;Js_l A;~'.where Q,_, is the closure of Q,_,.

(ii) FS_I(A;-I) > 0, for all re &»5_1'
(ity FS'I(AS".I i Ast"l) =0,for all k,vev*~!and k 4y,

(iv) fo_), w, [ (a

tinuous in AS-! for all te V-,

(v) X} is of constant sign in A}~ for all tet*-1,
where [ (.) is the conditional frequency function of b, given b,, . .. ,b _, and
X} is an optimal X for 1. ~ ‘

i, ii, and iii say that {A;“, te - divides Q,_,into a set of s -1
dimensional rectangles such that the probability that a random point (b,, . . .,
b._,) in Q,_,is in any one of these rectangles is greater than zero, and the
probability that (b, . . . ,b;_) is in the intersection of any two rectangles is
zero. In both cases the probability is computed using the frequency function

1,.. ,s-1and\* are con-

s~1
T3 ’ ,
os X *,::': as,‘\’ twg) X
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featby, .. . ,b). Moreover, using well-known properties of any distribution
function (i.e., for discrete or continuous random variables}, it is easy to show,
using properties ii and iii, that there is at most a countable number of rectangles
Ayt with Ters-t,

It is always possible to find {A}~', fe¥'s-'} with properties i, ii, and iii and
such that f;_, is continuous in each Af,". It follows then that an assumption
equivalent to iv would be that X;,j =1, ... 1, and wy(b,, . .. ,b,-_,), i=1,...,n
are each continuous functions with a countable number of discontinuities. Thus
iv does not restrict our problem to any significant degree.

It is important to realize that the set of rectangles {A}!, fe %!} defined
above depends critically on \: In other words, there may well exist other
feasible (but not necessarily optimal) decision rules for Problem 1 that would
generate a covering of Q,_, different from the one given by {A]‘}"' , Ltevs-11, How-
ever, because the chief concern is with deriving necessary, rather than sufficient,
conditions for X%, only 1A$‘,-', tef's-1}, henceforth referred to as the “optimal
partition” of Q,_,, is considered.

It must also be emphasized that \t , an optimal X, is not necessarily
unique. That the solution of Problem1 is not unique follows from the fact that
any other decision rule X{ that is such that "....'f,_,db...db,_, = 0, where
A LBy, e )by )t g & xj 1, will satisfy the constraints of Problem 1 and have
¢ E(X{) = ¢E(X\%). Hence X wili also be optimal for Problem 1; i.e., the optimal
decision rule for Problem 1 is, in general, nonunique~—at least on a set of meas-
ure zero. This trivial nonuniqueness can of course be avoided by adopting a
convention such as making X} right (or left) continuous. However, this is not
the only kind of nonuniqueness that can occur. In Sec 6 a situation is illustrated
in which the optimal rule fails—in a very significant way—io be unique. In fact
the situation is such that two optimal rules could fail to be equal for every point
(bh L) vbS—l)fQS—l .

In order to solve Problem 1, rewrite the ith constraint using assumption a.

'
')(,.}n""\' v by L 2 u)

l‘(h I s (s ) ford 0
4 o ¢ Idl ! dl
l‘(h Lo \ ! for &0
' -|_I dl '- dll» or
let
, U | oy
(l” —d"‘cllll (»‘ T

Let "' be the set over which

Then
i
l'(hl S e - .,,)

ooty L db)
II

n

by our interpretation of the P operator.




By assumption d, X; is only a function of b,, . . . ,b;_,, and so the set "'
depends only on b,, . . . ,b;. Hence the above integration can be performed
first with respect to b;, j=i+1,...,n and then with respectto b;, =1,
-+« ,i. But integrating with respect to b;,j=i+1,... ,n, we are integrating
the joint frequency function of the various random variables over their entire
range of possible values (i.e., over all the values that they can take on with
nonzero probability). Since the value of this integral is 1,

[.I.‘;-I'"‘bi...‘." - j....“‘!‘db'-..db‘ -
e

f.é..ffl(-'§l¢.',\’ . “,'.),'.l‘“,l e
where l-‘,(.) is the conditional distribution function of b, given b,, . .. ,b;_,.
This last equation is obtained by holding b,, . . . ,b,_, fixed and integrating over
" with respect to b,.

Similarly for d, <0

b('fla”\' + ‘.b' + o = 0) -1 - |;...JF‘(-';|¢:'\, _,,.')'l_l.]bl "'dhn—l
Ql—l
E(X;) = ¢;E(X)) = ¢ [.... X[ ,dby ... db, = ¢ J....[X;[;_(dby...db_,
on U;—l
Therefore Problem 1 can be written in the following form:
maximize
BT R X6 _ydby. .. db
Q.
subject to
sgn (d) f....] l:. (~ i a X - -,')[‘_“!h‘ ool g2 0l =l .., n
Q. e
PIX, 20) 28, .j=0,..., ", (2)
where

a, if sgn d,) = + 1 lie., if d 0)

2, =1 ifsgn (d) = =1 lie, if d, 0),

and by Q, is meant th t we perform no integration but just get ¢, X, in the ob-
jective function and sgn (d,) F,(- a}, X, = w/) ~ &/ in the constraints.

For convenience, fix on certain choices of sign for some of the constants
involved in Problem 1 to carry forward the mathematical arguments. Only a
simple formal exchange must be made in order to encompass the other possible
choices of sign into our results. It is assumed that d, < 0, ¢, > 0, a;; > O for
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1=1,...,n. Bydefining 4, -a),and w; -w, Problem 2canbe writtenas
maximize

S Ny dby o db

subject to

1
"""'['(I'\'ﬂl’l'\l ' “’I")’l—ldhl SR O T S A B I |

PIN 200 2= (3)

For the sake of notational convenience the primes will be dropped from
a; and w, throughout the remainder of the paper. Moreover, the region of in-
tegration will no longer be explicitly written out, but it will be implicitly under-
stood that when we integrate using the frequency function f,_,i =2,.. . ,n the
region of integration, unless otherwise stated, is Q,_, .

Finally, assume in what follows that [¢,E(X])|<=,j=1,...,n and that
there exist decision rules X}, j=1, ... ,n that are feasible for Problem 3.
Various ways of modifying a chance-constrained problem, when the constraints
are inconsistent or the optimal value of the objective function is unbounded,
are discussed at length in a previous paper.’

3. SOLUTION OF THE sth SUBPROBLEM

By the Sth subproblem the following is meant:

maximize
Cfo Ny dby L db
subject to
[ |r\('_\.lu\,\, . .) fom @by L kL il o B~
PN 200 2 B (4)

In Problem 4 it is assumed that X, (b, . . . N 1,... ,s-lare given
functions and that the optimal X (b,, . .. ,b,_,) is sought. Furthermore, it is
assumed that the given functions X,, =1, ... ,s -1,and all feasible X satisfy
the requirements imposed on X;, ) =1, ... ,n in the preceding section. Thus
Problem 4 is to be solved for the optimal X, as a function of w, and the given
decision rules \;, . . . ,X,_,. In Sec 4 the results of this ser.ion and an inductive

argument to solve the n-period Problem 3 are used.
Let X% be an optimal solution for Problem 4.
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" l\\_l ] ,\(Al“\f ' '.l d\,\' . n\)[‘_‘u“)l .. 'dh~--l' for each e VS0,
¢
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Now consider the following localization of the problem:
maximize

4.0

co NIy dby b
it
f
subject to
- “—-1
l,‘;_.l.lr\,(u_“\\ ! |l|u\’\' . "'~>’~-l‘“’l""“’~—l ‘I" {5)
;

with the additional constraint that X, - 0 if ¢l’and X = 0if ¢ ]’. Clearly,

Leinma 1. The optimal continuous X, for Problem 5 is .\'fl '\;’_l , the re-
striction of Ny to As-1.

Proof. \‘\I As-! is feasible for Problem 5 and is continuous from our
definition of AS-!. Also if X%| Ay~! was not optimal for Problem 3, then X* would
fail to be optimal for Problem 4, since on A»\'I.-‘ its contribution to the objective
function of Problem 4 could be improved.

Lemma 1 shows that a necessary condition that \‘ be an optimal decision
rule for Problem 4 is that for each A*’l,-‘ . Tebs-l \f be the optimal continuous
solution for Problem 5. Further necessary conditions on \! are now obtained
for Problem 5, using variitional theory.

Theorem 1

A necessary condition for .\':l.'\;,—l to be the optimal continuous \_ for
Problem 5 is that for each point (b, .. . ,b, ) in .-\‘l,-‘.either .\'f( by, ... b
0, or fo(ass XY+ 7710, X, v wy) = - ¢y Ay, where A is a constant.

Proof. Let 'el’. Then in Problem 5 we will make the change of variable

A Zf The following problem is now solved:

maximize
oy ol (IS (e ity il S =

w-!

;
subject to

- o e
"\;;ilrx(““\_ ' ;Ll““ \l . ".)f‘ pdbyooodb . (6
;

for the optimal continuous function I, (b, ... b._,).

Problem 6 is a multiple integral isoperimetric problem in the calculus
of variations. In App A it is proved that the assumptions about - A; Porey




are sufficient for the derivation of the Euler equation H, 2, 0, where
Hib,, ... ,b, ) is defined by

» 3 »=1
T RO Y (u“\' CX gy, ..\),}_I
and X < 0 is a constant.
Since the Euler equation provides a necessary condition for I% to be optimal
for Problem 6, H(Z%) I, - 0implies

o -
~> ~2
.‘~\|\_] i:\ ’ .\a“]\(u“-\ . llld"\' . 4.‘>:| 0, (7)

and Eq 7 must hold for all points in "Pr—l .

Since any point (b,, . . . ,b,;_,) for whichf,_, - 0 contributes nothing to the
objective function or the constraint of Problem 6, only points for which f;_ >0
will be considered. Hence we conclude from Eq 7 that at such points

either :f -0,

, ~ =1 -t
or /. (u“ ::' v a, \’ oy - —— a censtant,
=1 Aa |

ie.,

eather \: -0,

T RO R PR (8b)

Au

Since either Eq 8a or Eq 8b must hold for every point in Aj~', the theorem
is proved for *¢l’. Since a similar result can be obtained if ’¢]’, the theorem
is proved for all tets-!,

The set of rectangles < A}7', 7e¢¥~'1 is now redefined to be such that, in
addition to having properties i-v of Sec 2, they also have the property that

(vi) either X! is identically zero in A}™' or else

c=a ] ]

L ST S W BEAN P
) [N I O S S “““ ll = \l )

where T3* is a constant such that there exists a solution Z*(b., .. .,b._,) of the

equation [, (I = T* for each point (by, . .. ,bo_)eAV ' and ¥ (by, . .. ,b, ) =

f:! 1*) is defined for each point (by, . . . ,b._)) by by, ...,b,,) max

(BT (™) l,;"* ', That such a set of rectangles exists follows from the fact

that in each x\]f'l defined in Sec 2 \* is continuous; hence, by Thseqrenl 1, each

-\‘,,'l can lgelpartitioned into a set of rectangles, say A} " RA¥.r» Such that

in each Ay, properties i to v and property vi hold. The subscript r can then

simply be dropped to make notation easier. Thus Corollary 1 is obtained.
Corollary 1. A necessary condition that X} be the optimal X, for Problem

4isthat there exists a setof rectangles (A}, 7¢¢"™"" with properties i-vi.

10
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Let | = {1 \" » 0 with strict inequality for some points in A,, ¢ L
Let ] (¢ \*( 0 with strict inequality for some points in A~ 3y
Letk (1: \‘ is identically zeroin ;7" 1.

Consider the problem

maximize
\ ‘-\ . 1
—
|,uu\|.\~—|”‘ I foydhy o db
X
. :l llv| N
S0 S R e S 2 R (9)
v
subject to
Yo, 111(1\*'”',‘))L_,ah,....u,\ S =y (9a)
Peip o=t
{
= ~-1 )
I, ('I') 3 ;le"\' o abth oo by \"— and bl | (9b)
\ 1
[~ ’I) ~ X o '\' o ll ihy ho_ e \;. S Vol (9¢)
| YRR S| S PN N PN (9d)

where V‘ Wf are constants and

~ =1
\ |‘\T}\ I.\;_.l. j '*<,_\—,|u~|\l . 'K)L—l‘“’l coadb oy
P

Prcblem 9 was obtained by using the expression for \'* given by Corollary
1. Problem 9a corresponds to the first (onstramt of Problem 4; Problems b
and 9c express the fact that .\s 2 0 in ,\l. for ’el, and \ ¢ 0in A} "for te;
Problem 9d gives upper‘ and lower bounds on Tj in ,\,, , Which assure us that
f (T)) is dehned in A;7, i.e., that there exists a solutmn of f,(2) = T; for each
point in r\r for 1el, 'e]. .

Now find T,r ,lel, 7e],as a fun(tx n of \y and thus reduce Problem 4 to
determining the optimal partition [\,v et

Clearly, )

Lemma 2. T, , 'el, 7¢], are the optimal I} for Problem 9.

Proof Proceeding exactly as in the proof of Lemma 1 easily proves that
if r} are not optmml for Problem 9, then a contradiction exists, since this
implies that \ is not optimal for Problem 4.

Using the fact that we are trying to find ﬂ"“ as a function of A; " and that
f '(.), w,, and X o b =1, ... ,s=1are known functions of by, . .. ,b _,, permits
repla(ement of Problem 9b and Problem 9¢ by conditions that give upper and
lower bounds on f, Combining these new bounds with Problem 9d and dropping

11




the second term in the objective function of Problem 9, since it is independent
of Ty, permits writing Problem 9 as
maximize

L |...,;'r‘['f'\"nrt,»‘)]h_,db,...dh\_, 1 B
Vet ] \;,-l L L '

subject to

L;, Z Ii,‘ z U|;, Fel, Ee], (10

where L; U; are constants.

Employmg a simple Lagrange mgltiplner argument makes it easy to es,;ab-
lish that a necessary condition that Ty be o?tlmal for Problem 10 is that Tg
take on one of the three values LY , Uy , or T°*, where T™isa constant that does
not depend on’ and so Ly o) ol Up for all !cl ,J]. Moreover, if Tt’ is equal to
Lp or Ug , then it is also equal to V? or W In other words, Ty cannot equal
the bounds on T; obtained from Problem 9b or Problem 9c unless these bounds
are the same as those given by Problem 9d.

Thus Theorem 2 is proved.

Theorem 2

There exists some constant, say T , such that T, takes on one of the three
values V*, &', or T° *,and V' - TS . W’ for tel, te].

4. THE n-PERIOD PROBLEM

Theorem 3

A necessary condition for X* 21 =2,...,ntobe on'.imal decision rules
for Problem 3 is that for each j a set of rectangles [Ag , Le?*™"} exists with
properties i-vi as defined above, with X, replaced by X' m iv and vi.

Proof. The theorem is proved by induction on t where s=n+ 1-t. Begin
by proving the theorem fort =1, i.e., that it is true for X:. Then assume for

induction that the theorem is true for t =k, i.e., for X,_p,;, - . . ,X; , and then
prove it is true fort - k+ 1, i.e., for Xy_j.

Let ¢ - 1.

Let X,, ... ,\,_, be feasible decision rules for the first n— 1 periods.

Then the problem of determining X’,’, is equivalent to solving Problem 4 with

s = n. Using Corollary 1, it can be seen that Theorem 3 is true for t = 1.
Assume for induction that the theorem is true whent =k, i.e., that it holds

for X} 4., ,...,X:. Now prove the theorem is true for t=k+1, i. e. , for X}, .
Using the mduatxon hypothesis, the expressions for \" M0 oG X‘ (‘an be

put into the objective function of Problem 3 to get

n n . y—_la“
o ¢ BV = oo X -‘_r\'l‘
jen—kyl jon—kel Fooy-t =14,

{




in which only those £¢{1-1 for which X'_l is not identically zero are summed
over. By integrating Eq 11 with respect to b1, 1 =n=k+1,. .. ,n,the resulting
integral, with respect to b,, . . . ,b,__, is such that the integrand is a piecewise
linear function of XT, i=1,...,n—k. To see this the right-hand side of Eq 11
is written as

n-k "

N B SR ek
ol =kl oy l.\!-l ’ \' ‘ St "—ldbl‘ .dh'_l
f

where k), is a constant that depends on the various a;, . However, it is known
that X} is a function of only b,, ... ,b,_,, so that for each i we can perform the
integration in the first term of expression 12 by integrating first with respect
tob,,...,b_,,and then with respect to b, ... ,b_,. Integrating with respect

tob,,...,b_,, yields an expression for the first term of expression 12 that

is of the form \

et 74

1.;;[1.;\:“, ..... db, _y . (12a)
B
where the sets Blp_l result from integrating over the various A'{l with respect
tob,...,b_,,and the coefficients c; depend on ¢ due to the effect of integrat-
ing f,_,, with respect to b,, . . . ,b_,, over the set A}

Now suppose that X,, . .. ,X,_,y-, are decision rules that are feasible for
the first n- k-1 periods. Then the problem of finding X}, i is of the form
maximize

’—k
&:.lk i e Vil g dby by
e (L3 od An=k=

subject to

n=k=1 ne k-1

) f.oo. ) Fn-k (“n—l: n=k \u—ﬁ ! i Gk )y \| C ek ’n-k—l g dhn - 1= =i,
l"yn-k—l A\"yl—k-l ' p=1 0 L1
PON 2o, (13)

where the c'}"‘ depend on ¢, as explained above. However, c'}"k is constant for
each ! and hence Problem 13 can be written as a series of problems (one for
each ’.d‘"'k"), each of which is equivalent to Problem 5 with s=n-k and ¢,

/¥, Hence the results of Corollary 1 can be applied again, and hence Theorem
3 has been proved for t=k+ 1.

Therefore, the theorem is proved by induction.

Corollary 2, .\';, }=1,...,n is a piecewise linear function of w,,1 1,...,
and f-X(T, ), ted'=Y i=1,. .. ,j.

Proof. By Theorem 3, \* is either zero or a linear function of \,",, k1,
«ooyi71, w,, and [,*‘(T}'); hence it is a piecewise linear function of « , and
f,"(T';), and .\';, k=1,...,)-1. Since this is also true for \} , k-1, ..., -1,
the corollary is proved.

13




Unfortunately the fact that «'} “"in Problem 13 depends on ¢ makes it im-

possible to extend the results of Theorem 2 to the general n-stage problem.
For in this case the Lagrangian solution of Problem 10 will yield a T** that
depends on ' for the same reason that the coefficient c"',’k in the objective func-
tion of Problem 13 depends on /.

However, the following theorem can be proved. An alternative and some-
what simpler proof is given in App B.

Theorem 4
If none of the constraints P(\ 3 0) = B)s -1,...,n in Problem 3 are
tight, then for eachj, y=1, ... ,n Ty clefmed in Theorem 3 can take on only

one of the three values V,, ar “,’, or 7', where V/, W) are defined as in
Theorem 2and V' . T - W/ for all reel-t,

Proof. Suppose the constraints P{X, = O} B),1=1,...,n are not binding
in Problem 3. Then the sign of \;‘ in any set Ay l, teL1-!' need no longer be of
concern. In particular, in Problem 5 the additional constraint that X, > 0 if
7el’and Xy 0if 7€’ is not needed.

Thus in the proof of Theorem 1 the change of variable X; = Z3 need not be
made since the sign of X; in Ap can be allowed to change. Agaln, using varia-
tional theory gives in place of Eq 7 that sH X, = 0 implies

=1
v, /\u“[‘<u“\: ' }.'u"\' ' -.‘> 0, (73)
:

Thus only Eq 8b can hold and hznce

v=1 o
.

. 1 - NS
S Rl A P (14)

[ B PO RN

in each AS-!.

Theorem 2 can then be proved as above.

Again Theorem 3 is seen to hold for t =1 and, assuming it is true for t =k,
the effect of \,, Re T8« 5 1, ,\“,'; on the objective function of Problem 13 is to make
c, -k independent of ¢, (i.e., c} ko gnkqor all 1e"-k where " is a constant).
This is true because Eq 14 implies that \, yi=n—k+1, ... ,n is strictly linear
in X,_,, not piecewise linear as it was in the prevxous case. Hence in Eq 11,
summing is over all te?! "', and hence the first term of expression 12 can be

written in the form
n =k [l

|\<-l |r.1}’_:o| '.). o \I.‘- ‘l'l'} l’_ldhl .... dhl—l !
Q2
where the sum of the integrals over all A has been dropped alnd replaced by
an integration over Q,_l , since it is known that Q,_, YeU- .A,. . But in this
case when integration is performed with respect to b,, . . . ,b,_, the resulting

value of the integral is 1, since the integration is performed over all possible

values of these random variables, not just some of the values as in the proof
of Theorem 3. Hence, in place of expression 12a, there is obtained

n=k

S l...Altl\:(“'ll ..... dhl—l'

g

=1




RPN P ey

where ¢; is a constant.

This means that the problem that must be solved to determine X},_, is the
same as Problem 4 with s =n—k and ¢, = ¢" “* Thus Corollary 1 can be used to
find X}, i, and hence Theorem 4 is shown to be true for t = k+ 1.

Thus the theorem is proved by induction.

5. AN EXTENSION OF THE RESULTS

In this section an extension of Theorem 3 is established. Suppose that

¢i,i=1,...,n are continuous random variables. If f; - f,(b,, ... b, ¢y,
»€i) = the joint frequency function of the random variables b;, ¢;,)=1,...,1,
if it is assumed that f, is a known frequency function, and if X; - X;(b,, . . .,b,_, ,
Ciy « « « +Cj_1); then Problem 2 becomes
maximize
n p=-1
E o0 X iy 7 db)dlc,)
j=1 Q|__| k=1
subject to
- I a“ @, P
sgn (d.) | TR f‘. - ,?-—l 7:- \' - jl—]y,_, hﬁl did)dlc,) 2 a,i=1,..., n,

Ql-—l

l‘l\' 20) 2 ﬂ'.y»l ..... ",

where Q,_, is the closure of the set in 2(-1)-dimensional Euclidean space
where f,_, > 0, and ¢, is the conditional expectation of ¢; given by, c, k=1,
SR o %

Then it can be established that Lemma 1 continues to hold, only now
{A s 1 1e2%7" is a set of 2(s-1)-dimensional rectangles. Theorem 1 is also
true in this case, except that -c, a, is no longer a constant but rather a func-
tion of the conditional random variables involved in ¢,.

Thus Problem 9 is no longer a problem in determmmg a constant T; but
rather one of finding a function T, , and hence the Lagrange multiplier technique
used to establish Theorem 2 will not work.

However, Theorem 3 can be proved just as was done above by replacing

f; by ¢; . Thus the following result has been established:

Theorem 5

If in Problem 3 it is assumed that ¢;, b,,1,) =1,. .. ,n are continuous
random variables, then \, ,i=1, ‘4 ,n is a piecewise linear function of w,
and f '(T? ),i=1,...,j, where T,, is a function of by, ... ,b,_,, c., S T

This is the specxahzatxon of Theorem 2 in our previous paper’ to the
triangular case.

6. INDEPENDENT RANDOM VARIABLES

Return again to the problem considered in Sec 2, in which the ¢;,) =1,
,n are constants. Also introduce the additional assumption that the random
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variables b,, i -1, ... ,n are mutually independent. Letf,(.),and F, (.),i=1,
,n represent the frequency function and the distribution function respec-
tively of the continuous random variable b,, i=1,... ,n.
In this case several extensions of the previous results are immediately
avallable First, owmg to the assumption about the mde[)endence of the b,,
fol f\( ); hence f; ‘(TP ) defined in Corollary 1 equals f;! Ty‘), which 1s a con-
stant i.e., not a function of any b, . Moreover using the defmltlon of ¥ and
the fact that P (T“)J = Fs[fs'(T}") ) is independent of by, ...,k _,, gives
Fst L™ ) IR (A ') = 9 for ’¢l and f¢]. This implies that

.

2 Nie 3

o s it ——) it
oy a=h '

where D}* is some constant in (0, 1}
Usmg this definition of F (D} *) permits replacement of ]'—‘(T ) by
l(D,, ) in property vi of {A}” e 'd" 11, which was defined following Theorem 1.
Thus the equivalent of Problem 9 lS
maximize

.
Y = Fho)rF, _, (ah
{"1!,] dsy U

\:l a" g (15)
SR I S ="\ — | f._ydby...db
*'JI.J‘)J \‘—IJ 1= a\s ! ' u.\‘s ’-.\_l ! !
¢
subject to
s A=l 8 q
i S I e A (15a)
el,]
=] |
l), 2 F_\ l-l] d_‘,\’ LB all (hl ..... bs—l)'"-l' and t',' (15b)
. = \_~l i
Do F, |-\-| a N\ e ol by b e T and Feg (15¢)
0Dy 1 allg. 115d;

It is clear that D*‘? are the optimal D‘; for Problem 15.
In solving Problem 15, 15b and 15¢ constraints can be replaced by
constraints of the form

Dy 2 ey Th e (16)
and

Dy = Fk TN e peg (17)
where k}~' is a constant that depends on Ap~'
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Since these constraints give bounds on D3, Problem 15 can be written in
a form similar to Problem 10. This problem is then solved with the result
that D}* can take on only one of the three values, 0, 1, or D**, where 0 < D™ < 1.
This is the analog of Theorem 2.

If f“'(T' ) is replaced by F (D';) the results of Theorems 3 and 4 can be

obtamed ]Ubt as they were in Se( 4, only now, in Theorem 4, Dy can take on only
the values 0, 1, or D'* forj-1,... ,n.

Letl, - [’-.D',‘ = J* for ',,d"“},
Letl, = {l:[):,‘ =0 for re?!"1,
Let i; - [’.:D",‘ =1 for te¢Y.
T..en when Theorem 4 is applicable (i.e., when the constraints P(X, - 0)

B, 1 1,...n, are not binding),

. j=1 u.,‘, R “©, IS 1 .
A N ETRTA T A M I ) VT LT

" "
=1 d" ) o
T N T (T T Bt N (10 Y [ YO I
ety -l kel d ’ ! ! ! -l
)~1 “lk P (03 |
D ] R T WAL SV R) N ST L PR |
Fer, \'b'_l koo, ‘1

y—l a., D
D L VR T L Y L
Ferpayny -l B 1 S 2

R -1 1* v F ) =1 -1 S A=y 7 =1 \ -1
r, My r;-lHr ) . r, m X r’_lt\t, ) Rl L S Py [

|¢ll YIIQ l':l‘ J
However, it is known that Q g1 A"." and that I, I, [+ partition the
set of indexes ’¢¢'"". Thus the fu‘st term in this expression does not depend on

the choices of A'"'. In other words this first term is known when X{, k=1,

.41~ 1 and is independent of the choice of (ALY, re¢”™"V and D™. Moreover,
using the expression for \

=1
I ll' ( ”\l. 0 k\_.l d”‘_\; ‘ |n|>"_|db|.'.db'_|

DX it a et

llll l«l‘

Hence, when the constraints P{! ', 20)28,1=1,...,narenot binding, to find

the [A',?' , 7e¢t!™'Y and D only this problem needs to be solved:
maximize

B L oS l'_lt\"'\ g ["nm )

Gyt S U S M U
ETE ety ! bt

=1 [
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subject to

[ AR o I A T R
tel t Fel j '
1 3

0 n’ 1 and D) F_|1\;.—|l 1. (18)
Petyotyoty !

Now see that by defining

\ =1
('l, "- fl_li\'. 1.

tll

\ 1=1
(-_.l .‘- l'_l(\.. [N

ol,

\ -1
(lh _' '--l“.’ ).

and assuming D" is known, Problem 18 can be written as

maximize
oy LRI T,"m(.h
subject to
DGy by - =
L R T (19)

G, 208 0 R

Problem 19 is a linear programming problem in G,,1=1,2,3. Since there
are three variables and only two constraints, it is known from the theory of
lmear programming that at the optimal solutnon at least one of the G, = 0,

=1, 2, 3. Noting that F o) - F-“r)") = Fy'(1)as 0 D™ - 1 and that Fj ! is
a nondecreasmg fun(‘tlon it can be seen that at the optimum G, = 0.

Moreover, the first constraint of Problem 19 must be satxsfied as an
equality at the optimum; otherwise D could be increased, thus increasing the
value of the objective function and so contradicting the assumption of optimality
of D*. Therefore it may be found from the constraints of Problem 19 that

. T + !
(v]‘ = l——lT and (l“ - - W (20)

are the optimal values of G,, and G, respectuely These give expressions for
the optimal G,,,1-1, 2, 3 in terms of D"

It remains to determine D" by sol\mg
maximize
' —l(”l) _'. . f'—l'l) ] __L
1-nt =D

[ J ) LI (21)

subject to
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by solving this nonlinear programming Problem 21, D'* is obtained, and by using

Eq 20, (j,‘l and (jf, are obtained. Thus ,\'; has been obtained explicitly for the case

where Theorem 4 is applicable (i.e., where the constraints P(\, - 0) - 8,1 - 1,
.,n are not tight), and the random variables are independent.

Moreover, this entire development did not depend on \:,, k=1,...,1-1
since Problem 18 does not explicitly involve the decision rules of the preceding
periods. Thus the results on .\7 are valid for all y, -1, ... ,n, and hence
Theorem 6 has been proved.

Theorem 6

If the constraints P'\; = 0’ : g,)=1,... ,n are not tight, and if the ran-
dom variables b,,1 - 1,. . . ,n are mutually independent, then the optimal de-
cision rules for Problem 3 are given by

U= o d

NS S R S
] - 0 T 4 ! ! !

where DI} is either 1 or D™, and {A\"", 7et! ") are any sets for which
Q. .t ntim :\',7' and that satisfy Ty [ ( ’\'.-") = G and S|,F,(‘\',f' ) - G}, . More-
over, Di* is found by solving Problem 21, and G1, G', are obtained from Eq 20.

Thus it has been shown that Problem 3 can be reduced to a problem of
solving n rather simple nonlinear programming problems of the form of Prob-
lem 21. In particular, if each random variable b,,1=1, ... ,n has the same
distribution, then Problem 21 needs to be solved only once to obtain D™ asa
function of a;. This will then give n' =*1, . . . ,n by putting the corresponding
6, 1=1,. .. ,n into the expression for p! (o).

It is important to note in this development that, as implied by Theorem 6,
‘-ﬂ\'.'_l . rev!™ " is not necessarily unique. Indeed, only the optimal covering of
Q,.. need be selected, subject to the restriction that G}, and G}, have their
required values. Thus the question arises as to when this optimal coverijng
will be unique. From Eq 20 it can be seen that this will happen only if D"

1- @, in which case G, =1, G}, 0, and hence the optimal decision rule is
=1 a s
Y d_;:‘\; ‘_' S L RTP
for all (by, ... ,b_)eQ,_,.

This development also shows that if G}, = 0, so that the optimal covering
of Q'_l is not unique, and if Gf, =] U= GT, , then, in general, two optimal decision
rules for \, that do not coincide anywhere will exist in Problem 3.

Another result that is worth noting is

Theorem 7

If b,,...,b, are independent random variables, then a necessary condition
¥ v
that D, 1 for some 'e¢V " 'is that

19




and
d -
E[I\(f\"l‘)]_‘(). (22)

This theorem can easily be proved by using Lagrange multipliers to solve
Problem 15. This result is true for the case n 2 even when the constraint
P(X, - 0) « 8, is binding. It is also true for the n-stage problem when none of
the constraints P(\, - 0) - 8, is binding. Thus we know that Gf, = 0 in Theorem
6 without solving Problem 21 if Condition 22 is not satisfied.

Again, considering Problem 15, Theorem 8 can be proved.

Theorem 8

If the random variables b, . . . ,b, are independent, then a necessary
condition that D* = 0 for some /¢¢"'is that [J'(0) - - - and either F (kj™') = 0
orf F7Y0). - LLF;‘(D"):, where !zf’_l is defined in constraints 16 and 17,

This theorem holds for the case n=2 even when the constraint P(X, : 0) =
8. is vinding. In RAC-TP-174', Theorems 7 and 8 are used to solve explicitly
for the optimal decision rules of a particular two-period problem.

7. LI''EAR PROGRAMMING UNDER UNCERTAINTY

A special case of Problem 1 that has been considered in the literature is
the case in which ¢, B, = 1,1,j=1,... ,n. Such problems have been named
“linear programming under uncertainty.”

The foregoing work gives the following theorem for this special case.

Theorem 9

Leta,=1,1=1,...,n.
Let8,=1,1=1,...,n.
Then either \7 =0, or

) w,
vV — - — 1=t
u 1

for all points (b, . . . ,b_)€Q,_,.

Proof. From our definition of y; we get );‘ = 0for all ' as a, = 1 for all1
implies that 1- ¢, = O for allr. < s

Therefore we mgst have F, STy ). = 0for abll_lpoints in Ay for lel,].

Therefore ;! (T, ) = F;*(0) for all points in Ay ', and hence the theorem
is proved.

This result is particularly important because it illustrates dramatically
the restriction of optimal action that occurs when the chance-constrained pro-
gramming problem is restricted to a problem in linear programming under
uncertainty. It should also be noted that the linear-programming-under-uncer-
tainty problem has no solution for distributions (such as the normal distribution)
for which F-1(0) = - +.
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APPENDIXES

A. Derivation of the Euvler Equation

B. An Alternative Proof of Theorem 4
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Appendix A

DERIVATION OF THE EULER EQUATION

Most texts of the calculus of variations derive the Euler equation for the
problem
maximize

. (.(\ \ \'.\'*\')J\
W

subject to
vl \oand v 1] (23)

In order to do this, they assume that in a,b’ vy (x) exists and is continuous
and that all second partial derivatives of (;{.) exist and are continuous. They do
not consider the case in which G(.) is not a function of v'(x) and so do not dis-
cuss what weaker conditions of continuity ..nd differentiability of G(x,v) are
sufficient to obtain the Euler equation for this problem. Hence a derivation of
the Euler equation for this special case is presented here.

Consider the problem

maximize
h

" (.(l.\u')dl, (24)

where it is assumed that - G v exists and is continuous in _a,b | and that v(x)
is continuous in _a,b_.

Let J&y) "G x,y(xr) dx.

Let v (x) give a relative strong maximum to | (y), i.e., J(v) [J{v) for all
v such that |v(x) = (v)|<e forall xin _a,b_and some ¢ - 0.

Let v(x) v(x) + ¢f(r) be any other continuous cuive such that |v(x) - v(x)|-
e for all xin _a, b .

Let ole) Jiv + €f).

Then, since v is an extremum for J(y),dg(e) de | . =0, ie.,p'(0) -0 _.

But (e} - u'u"(;(x,v + ef)ydx, so that ¢ ’(0) ""z‘(:(i(x V) :_v) f(x)dx = 0, which
by the lemma of Lagrange (see Akhiezer’)* implies that

p e O forall v on [d,h] (25)

oy

*Seealso Bateman' for a more complete discassion, ineluding Haar's T emma,
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Hence Eq 25 is the Euler equation for Problem 24, and the existence and con-
tinuity of G, sy is a sufficient condition for the derivation of Eq 25.

The extension of Problem 24 to multiple integral isoperimetric problems
can be achieved as it is in most texts of the calculus of variations. Hence
Problem 5 requires that

o o=
AT[I‘\\"-' ’ “"<“"\‘ ' .}'lu"\’ ' ”>"-|

exist and be continuous in Aj~'. This is assured by the definition of A} '

It is interesting to note that no end-point conditions exist on y (x) in
Problem 24 as in Problem 23. This is because the Euler equation (25) im-
plicitly defines y(x), and hence arbitrary end-point conditions would make the
problem inconsistent. In the terminology of the calculus of variations there
are the “natural conditions” at the end points in Problem 24. This is also the
case in Problem 5.
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Appendix B

AN ALTERNATIVE PROOF OF THEOREM 4

In Theorem ¢ it i8 shown chat the results of Theorem 2 could be extended
to the complete n-period model if it is assumed that the constraints P(X, 2 B,),
} = 1,... ,n are not binding. In this appendix a different and somewhat simpler
approach is used to establish Theorem 4.

Problem 1 can be written in the form

maximize
lr'.!l., Jooo IN Ay dby L db
subject to
sen () LT (~ ,'{-'lu"'\' - ,.."> [oqdbyooodb o2 x e, ., n,
P, = 0N e = n. (26)

Now suppose that the constraints P(X, - 0) = g;,j=1,...,n are not binding
in Problem 26. Letw, ,i=1,...n by

Then, by inverting these equations to get X, as a function of u,,i = L, ...,

u, )

\I - - —
4y 4y .
u~,1h') ] ds)

\_, - . -—”_r "'!(hl) __al;\l

. — = — b))
i) T o2

4 4o

A “:x[ SN TR
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or, in general,

% S
m(hl ..... h]—l" o LR n, (27)

where the r; .1, = 1, ... ,n are constants that depend on the a;; and d; .
Putting Eq 27 into Problem 26 and ignoring the g, constraints shows that
Problem 26 is equivalent to

maximize
g ; £ '
‘.-l" | RSP | —l'”“' + '—l]—"r-’ 'I—ld"l "dbl-l
subject to
sen (d) f.... [ F (uiv,,..., RS R e A S T n. (28)
This 1s equivalent to
;‘ { T
 EEEE | l-l -I “T "p't-ldhl' . 'dh1~—| +
maximize
n n
,}l forenl ‘T-l‘l’h“!'l—'ldhl' y ,dh’__!
subject to
sgn 'd" c....ii-"u"l‘_ldhl.udb oy S I O B n. (29)

In transforming Problem 28 into Problem 29, the region of integration
was changed from Q,_,to (_),_,. This was done by first observing that in the
objective function of Problem 28 u; is being integrated, and, in our enumeration,
i =). Nowifi >j,the term c¢;ryu (b, ... ,b_,) can be factored outside the
integral sign, and the integration of f,_, can be performed with respect to
by bjsyy - - ,bi_,. This means that integration is being performed over all
possible values of these random variables. Hence the value of this integration
is 1, and integration must be performed over O,_ A

However, Problem 29 is now separable into the following n distinct and
unrelated problems of determining w;, ) - 1,... ,n, viz,

maximize
f n
fiicik l(l ‘.’;.)“,',-l‘“‘l‘ ol s
=) -

sgn (d) f... fF(u)f,_,dby...db _, Z & . (30)

subject to

Since Problem 30 is a special case of Problem 4, we can proceed to solve
Problem 30 just as Problem 4 was solved. Establish that a necessary condition
that u, maximize Problem 30 is that there exist a covering of Q s Say
[A'' 2911, such that u; =Ty ) in AY', te¥'"" | where Hl can have only
three possxble values v, I,,' or T
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If it is now assumed that the random variables are independent, D' can be
defined as was done in Sec 6 and the optimal D' and A, can be found as was
outlined in the development preceding Theorem 6. Thus u' is determined

Since this can be done for each j,j=1,... ,n in Pro‘blem 30, u , 1=1,

. ,n can be found. Substituting these expressions into Eq 27,

-
-
/-
-
=
*
7/
i

i "'lul",ld !

|~_-l d” % 1 \ S5 ]
- 3 — X' - — w; + rl"l (l).‘ ) in "l' ’
j=1 @5 7 i

which agrees with the previous results.
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